Optimalisasi Portofolio Investasi untuk Menghadapi Ketidakpastian Ekonomi
Main Article Content
Abstract
Penelitian ini mengkaji strategi optimalisasi portofolio investasi dalam menghadapi ketidakpastian ekonomi melalui pendekatan bibliometrik dan analisis data historis. Dengan menganalisis tren publikasi, pola kolaborasi penulis, dan hubungan kata kunci, penelitian ini menemukan bahwa diversifikasi portofolio, manajemen risiko yang ketat, dan pemantauan serta penyesuaian portofolio secara berkala adalah kunci untuk mencapai stabilitas dan pertumbuhan keuangan. Kombinasi dari analisis fundamental dan teknikal serta penggunaan teknik seperti stop-loss order dan rebalancing secara rutin terbukti efektif dalam mengurangi dampak negatif dari volatilitas pasar. Temuan ini memberikan panduan praktis bagi investor dalam mengelola portofolio mereka untuk meminimalkan risiko dan memaksimalkan keuntungan di tengah kondisi ekonomi yang tidak menentu.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Abuzayed, B., & Al-Fayoumi, N. (2023). Diversification and hedging strategies of green bonds in financial asset portfolios during the COVID-19 pandemic. Applied Economics, 55(36), 4228–4238. https://doi.org/10.1080/00036846.2022.2128178
Abuzayed, B., Al-Fayoumi, N., & Bouri, E. (2020). Co-movement across european stock and real estate markets. International Review of Economics & Finance, 69, 189–208. https://doi.org/10.1016/j.iref.2020.05.010
Almeida, L., & Vieira, E. (2023). Technical Analysis, Fundamental Analysis, and Ichimoku Dynamics: A Bibliometric Analysis. Risks, 11(8), 142. https://doi.org/10.3390/risks11080142
Bahasoan, A. N., Anwar, A. I., Lekas, M. N. J., & Asryad, R. (2024). Otonomi Daerah dan Pertumbuhan Ekonomi di Indonesia: Literature Review. Ekonomis: Journal of Economics and Business, 8(1), 43. https://doi.org/10.33087/ekonomis.v8i1.1119
Balel, Y. (2021). Bibliometric analysis of international publication trends in impacted third molar surgery research (2000–2020). British Journal of Oral and Maxillofacial Surgery, 59(10), 1220–1226. https://doi.org/10.1016/j.bjoms.2021.04.003
Beyaz, E., Tekiner, F., Zeng, X., & Keane, J. (2018). Comparing Technical and Fundamental Indicators in Stock Price Forecasting. 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), 1607–1613. https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00262
Chou, Y.-H., Jiang, Y.-C., Hsu, Y.-R., Kuo, S.-Y., & Kuo, S.-Y. (2022). A Weighted Portfolio Optimization Model Based on the Trend Ratio, Emotion Index, and ANGQTS. IEEE Transactions on Emerging Topics in Computational Intelligence, 6(4), 867–882. https://doi.org/10.1109/TETCI.2021.3118041
da Silva-Oliveira, K. D., de Miranda Kubo, E. K., Morley, M. J., & Cândido, R. M. (2021). Emerging Economy Inward and Outward Foreign Direct Investment: A Bibliometric and Thematic Content Analysis. Management International Review, 61(5), 643–679. https://doi.org/10.1007/s11575-021-00448-9
Duarte, E. (2022). Trailing Stop-Loss and Re-Entry Strategies in Europe. European Journal of Business and Management Research, 7(3), 118–123. https://doi.org/10.24018/ejbmr.2022.7.3.1426
Ghanbari, H., Safari, M., Ghousi, R., Mohammadi, E., & Nakharutai, N. (2023). Bibliometric analysis of risk measures for portfolio optimization. Accounting, 9(2), 95–108. https://doi.org/10.5267/j.ac.2022.12.003
Gupta, O. (2023). The Effectiveness of Different Portfolio Diversification Strategies on Reducing Risk: A Survey Based on Financial Advisors (2021). Journalofcardiovasculardiseaseresearch, 12(06), 2104–2113. https://doi.org/10.48047/jcdr.2021.12.06.328
Joshipura, M., & Wats, S. (2023). Decoding momentum returns: an integrated bibliometric and content analysis approach. Qualitative Research in Financial Markets, 15(2), 254–277. https://doi.org/10.1108/QRFM-12-2021-0211
Kaur, J., & Dharni, K. (2023). Data mining–based stock price prediction using hybridization of technical and fundamental analysis. Data Technologies and Applications, 57(5), 780–800. https://doi.org/10.1108/DTA-04-2022-0142
Kulshrestha, N., & Srivastava, V. K. (2020). Synthesizing Technical Analysis, Fundamental Analysis & Artificial Intelligence – An Applied Approach to Portfolio Optimisation & Performance Analysis of Stock Prices in India. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), 1185–1188. https://doi.org/10.1109/ICRITO48877.2020.9197966
Li, C. (2022). Empirical Study on Portfolio Size and Risk Diversification. https://doi.org/10.2991/aebmr.k.220307.479
Lin, X. S., & Yang, S. (2020). Efficient Dynamic Hedging for Large Variable Annuity Portfolios with Multiple Underlying Assets. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3550106
Ma, Y., Ahmad, F., Liu, M., & Wang, Z. (2020). Portfolio optimization in the era of digital financialization using cryptocurrencies. Technological Forecasting and Social Change, 161, 120265. https://doi.org/10.1016/j.techfore.2020.120265
Nadler, D., & Schmidt, A. B. (2018). Beta Hedging: Performance Measures, Momentum Weighting, and Rebalancing Effects. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3166708
Nti, I. K., Adekoya, A. F., & Weyori, B. A. (2020). A systematic review of fundamental and technical analysis of stock market predictions. Artificial Intelligence Review, 53(4), 3007–3057. https://doi.org/10.1007/s10462-019-09754-z
Pedersen, L. H., Babu, A., & Levine, A. (2021). Enhanced Portfolio Optimization. Financial Analysts Journal, 77(2), 124–151. https://doi.org/10.1080/0015198X.2020.1854543
Picasso, A., Merello, S., Ma, Y., Oneto, L., & Cambria, E. (2019). Technical analysis and sentiment embeddings for market trend prediction. Expert Systems with Applications, 135, 60–70. https://doi.org/10.1016/j.eswa.2019.06.014
Rani, M. (2019). Research Trends in The Electronic Library Journal During the Period 2010-2018: A Bibliometric Study. Webology, 16(2), 212–222. https://doi.org/10.14704/WEB/V16I2/a199
Sah, S., & Kundu, A. (2022). Investment Opportunities in International Markets: An Optimum Portfolio Analysis for the Tokyo Stock Exchange. FOCUS: Journal of International Business, 9(1), 46–62. https://doi.org/10.17492/jpi.focus.v9i1.912203
Sakurai, Y., Yuki, Y., Katsuki, R., Yazane, T., & Ishizaki, F. (2019). Quantum-Inspired Weighting Approach to Correlation Diversified Passive Portfolio Strategy. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3487195
Salisu, A. A., Vo, X. V., & Lawal, A. (2021). Hedging oil price risk with gold during COVID-19 pandemic. Resources Policy, 70, 101897. https://doi.org/10.1016/j.resourpol.2020.101897
Sbaiz, G. (2023). Sustainable information into portfolio optimization models. Journal of AppliedMath, 1(1). https://doi.org/10.59400/jam.v1i1.125
Supriyati, Y., Sati, D., & Yudha, R. P. (2022). A Bibliometric Analysis of Research Trends in the Scientific Approach to Physics Learning. Journal of Physics: Conference Series, 2377(1), 012075. https://doi.org/10.1088/1742-6596/2377/1/012075
Umate, R., Patil, M., Telrandhe, S., & Pathade, A. (2020). Bibliometric Analysis of Publications from Web of Science Affiliated to Health Sciences University from 2017-2019. Journal of Evolution of Medical and Dental Sciences, 9(23), 1756–1764. https://doi.org/10.14260/jemds/2020/386
Zandi, G., Torabi, R., Mohammad, M. A., & Jia, L. (2021). RESEARCH ON STOCK PORTFOLIO BASED ON TIME SERIES PREDICTION AND MULTI-OBJECTIVE OPTIMIZATION. Advances in Mathematics: Scientific Journal, 10(3), 1509–1528. https://doi.org/10.37418/amsj.10.3.37
Zhang, S. (2022). Portfolio Analysis for the Retired Population. BCP Business & Management, 35, 701–708. https://doi.org/10.54691/bcpbm.v35i.3373
Zhu, R., Wang, Y., Wu, R., Meng, X., Han, S., & Duan, Z. (2020). Trends in high‐impact papers in nursing research published from 2008 to 2018: A web of science‐based bibliometric analysis. Journal of Nursing Management, 28(5), 1041–1052. https://doi.org/10.1111/jonm.13038