Potensi Pengurangan Emisi Gas Kabron dengan Perencanaan PLTS Atap pada Gedung Fakultas Teknik 03 Untidar

Authors

  • Muhammad Amrullah Universitas Tidar
  • Deria Pravitasari Universitas Tidar
  • Sapto Nisworo Universitas Tidar

DOI:

https://doi.org/10.56799/jim.v2i6.1649

Keywords:

Solar Power, On-Grid, Iradiation

Abstract

One way to reduce carbon dioxide emissions from power plants powered by fossil fuels is by utilizing new renewable energy sources to generate the electrical energy needed each day. The Faculty of Engineering 03 UNTIDAR Building has a roof area of 997.4 m2 and a solar irradiation potential of 4.89 kWh/m2 per day, so it is very probable to build a rooftop PLTS to supply the building's lighting demand. Therefore, a plan for installing a rooftop PLTS system was implemented in this study in order to contribute to the utilization of new, renewable energy and the reduction of carbon dioxide emissions. The method employed in this planning is descriptive analysis, which includes analyses of the locations for installing solar modules, the building's daily electricity usage, the technical design of the rooftop PLTS system, analyses of the energy produced, and analyses of the potential to lower carbon dioxide emissions. According to the planning results, the rooftop PLTS has a capacity of 124 kWp and can generate 135,299,299.29 kWh of electrical energy annually utilizing 231 units of 540 W solar modules that are divided into 10 strings. 8,267.97 kWh are typically exported each month to PT. PLN as electrical energy. While the potential reduction in carbon dioxide emissions is calculated to be 135,299.29 tons of CO2 annually.

Downloads

Download data is not yet available.

References

O. C. Akinsipe, “Design and economic analysis of off-grid solar PV system in Jos-Nigeria,” J. Clean. Prod., vol. 287, p. 125055, 2021, doi: 10.1016/j.jclepro.2020.125055.

S. Nisworo, D. Pravitasari, and Nurhadi, “Tata Kelola Pembangkit Listrik Tenaga Surya,” Pengabdi. Masy., pp. 1–16, 2018.

Kemen-ESDM, “Peraturan Menteri ESDM Nomor 49 Thn 2018 Tentang Penggunaan Sistem Pembangkit LIstrik Tenaga Surya Atap oleh Konsumen PT. PLN (Persero),” p. 18, 2018.

Kemen-ESDM, “Peraturan Menteri Energi Dan Sumber Daya Mineral No 26 Tahun 2021 Tentang Pembangkit Listrik Tenaga Surya Atap Yang terhubung Pada Jaringan Tenaga Listrik Pemegang Izin Usaha Penyediaan Tenaga Listrik Untuk Kepentingan Umum,” Ber. Negara RI tahun 2021 Nomor 948, no. 1, pp. 1–35, 2021.

A. Wibowo, Instalasi Panel Listrik Surya. Semarang: Universitas STEKOM, 2022. [Online]. Available: https://digilib.stekom.ac.id/assets/dokumen/ebook/feb_7b0c285259317f76c1480d60d661e13279fdea8c_1647828394.pdf

M. C. Brito, “The importance of facades for the solar PV potential of a Mediterranean city using LiDAR data,” Renew. Energy, vol. 111, pp. 85–94, 2017, doi: 10.1016/j.renene.2017.03.085.

Q. Hassan, “Mathematical model for the power generation from arbitrarily oriented photovoltaic panel,” E3S Web Conf., vol. 14, 2017, doi: 10.1051/e3sconf/20171401028.

K. Sumariana, “Desain dan Analisa Ekonomi PLTS Atap untuk Villa di Bali,” Maj. Ilm. Teknol. Elektro, vol. 18, no. 3, p. 337, 2019, doi: 10.24843/mite.2019.v18i03.p06.

Kemen-ESDM, “Metodologi Penghitungan Pengurangan Emisi GRK dan / atau Peningkatan Serapan Karbon dalam Kerangka Verifikasi Aksi Mitigasi,” p. 9, 2020.

Downloads

Published

2023-05-12

How to Cite

Amrullah, M., Pravitasari, D., & Nisworo, S. (2023). Potensi Pengurangan Emisi Gas Kabron dengan Perencanaan PLTS Atap pada Gedung Fakultas Teknik 03 Untidar. ULIL ALBAB : Jurnal Ilmiah Multidisiplin, 2(6), 2501–2507. https://doi.org/10.56799/jim.v2i6.1649

Issue

Section

Articles